รูปแบบต่างๆ ที่เกี่ยวข้องกับการแปลงฟูรีเย ของ การแปลงฟูรีเย

การแปลงฟูรีเยแบบต่อเนื่อง

โดยปกติแล้วคำ "การแปลงฟูรีเย" จะใช้หมายถึง การแปลงฟูรีเยต่อเนื่อง ซึ่งเป็นการเขียนแทน ฟังก์ชัน f (t) ที่สามารถหาปริพันธ์ของกำลังสองได้ ด้วยผลบวกของ ฟังก์ชัน เอกซ์โปเนนเชียลเชิงซ้อน ซึ่งมี ความถี่เชิงมุม ω และ ขนาด (หรือ แอมปลิจูด) เป็นจำนวนเชิงซ้อน F (ω) ;

f ( t ) = F − 1 ( F ) ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t d ω . {\displaystyle f(t)={\mathcal {F}}^{-1}(F)(t)={\frac {1}{\sqrt {2\pi }}}\int \limits _{-\infty }^{\infty }F(\omega )e^{i\omega t}\,d\omega .}

ความสัมพันธ์ด้านบนคือ การแปลงกลับของ การแปลงฟูรีเยแบบต่อเนื่อง (Inverse Fourier transform) ส่วนการแปลงฟูรีเยนั้นปกติจะเขียน F (ω) ในรูปของ f (t) คู่ของ ฟังก์ชันดั้งเดิม และ ผลของการแปลงของฟังก์ชันนั้น บางครั้งก็เรียก คู่ของการแปลง (transform pair) ดูข้อมูลเพิ่มเติมที่ การแปลงฟูรีเยต่อเนื่อง ภาคขยายของการแปลงนี้คือ การแปลงฟูรีเยแบบไม่เป็นจำนวนเต็ม (fractional Fourier transform) ซึ่งค่ายกกำลังของการแปลง (จำนวนการแปลงซ้ำ) นั้นไม่จำเป็นจะต้องเป็นจำนวนเต็ม สามารถเป็นค่าจำนวนจริงใดๆ

เมื่อ f (t) เป็น ฟังก์ชันคู่ (ฟังก์ชันคี่) เทอม ไซน์ (โคไซน์) จะไม่ปรากฏ ซึ่งคงเหลือไว้แต่ การแปลงโคไซน์ และ การแปลงไซน์ ตามลำดับ อีกกรณีหนึ่งคือ เมื่อ f (t) เป็นฟังก์ชันค่าจริง จะทำให้ F (−ω)  = F (ω) *

อนุกรมฟูรีเย

การแปลงฟูรีเยต่อเนื่องนั้นเป็นภาคขยาย ของแนวความคิดที่เกิดก่อนหน้านั้น คือ อนุกรมฟูรีเย ซึ่งเป็นการเขียนแทน ฟังก์ชันคาบ (หรือฟังก์ชัน ในโดเมนจำกัด) f (x) (มีคาบ 2π) ด้วย อนุกรม ของฟังก์ชันรูปคลื่น:

f ( x ) = ∑ n = − ∞ ∞ F n e i n x , {\displaystyle f(x)=\sum _{n=-\infty }^{\infty }F_{n}\,e^{inx},}

ซึ่ง F n {\displaystyle F_{n}} เป็น ค่าจำนวนเชิงซ้อนของขนาด หรือ ค่าจริงของขนาดเมื่อ ฟังก์ชันเป็นฟังก์ชันค่าจริง อนุกรมฟูรีเยยังอาจเขียนในรูป:

f ( x ) = 1 2 a 0 + ∑ n = 1 ∞ [ a n cos ⁡ ( n x ) + b n sin ⁡ ( n x ) ] , {\displaystyle f(x)={\frac {1}{2}}a_{0}+\sum _{n=1}^{\infty }\left[a_{n}\cos(nx)+b_{n}\sin(nx)\right],}

โดย an และ bn เป็นค่าจำนวนจริงของขนาด ของอนุกรมฟูรีเย

การแปลงฟูรีเยไม่ต่อเนื่อง

สำหรับการคำนวณด้วยเครื่องคอมพิวเตอร์ ค่าสัญญาณในทั้งสองโดเมนจำเป็นต้องมีค่าเป็นดิจิทัล ซึ่งคือฟังก์ชันค่าไม่ต่อเนื่อง x [ n ] {\displaystyle x[n]} บนโดเมนไม่ต่อเนื่อง แทนที่จะเป็นโดเมนต่อเนื่อง ในช่วงจำกัด หรือ เป็นคาบ ในกรณีนี้เราจะใช้ การแปลงฟูรีเยไม่ต่อเนื่อง (discrete Fourier transform-DFT) ซึ่งเขียนแทน x [ n ] {\displaystyle x[n]} ด้วยผลบวกของฟังก์ชันคาบ

x [ n ] = 1 N ∑ k = 0 N − 1 X [ k ] e 2 π i n k / N n = 0 , … , N − 1 {\displaystyle x[n]={\frac {1}{N}}\sum _{k=0}^{N-1}X[k]e^{2\pi ink/N}\quad \quad n=0,\dots ,N-1}

โดยที่ X [ k ] {\displaystyle X[k]} คือ ค่าขนาดบนโดเมนการแปลง การคำนวณจากสมการข้างต้นจะใช้ความซับซ้อนในการคำนวณ O (N2) ซึ่งสามารถลดลงเหลือเพียง O (N log N) โดยการใช้ขั้นตอนวิธี การแปลงฟูรีเยอย่างเร็ว (fast Fourier transform-FFT)

รูปแบบอื่นๆ

DFT เป็นกรณีที่เป็นฟังก์ชันไม่ต่อเนื่องบนทั้งสองโดเมน ซึ่งบางครั้งใช้ในการประมาณค่าของ การแปลงฟูรีเยเวลาไม่ต่อเนื่อง (discrete-time Fourier transform-DTFT) ซึ่ง x [ n ] {\displaystyle x[n]} เป็นค่าไม่ต่อเนื่องบนโดเมนที่ไม่จำกัด ดังนั้นจึงมีสเปกตรัมเป็นค่าต่อเนื่อง และเป็นคาบ DTFTเป็นความสัมพันธ์ตรงข้ามกับ อนุกรมฟูรีเย

การแปลงฟูรีเย สามารถขยายความการแปลงบน อาบีเลียนโทโพโลยีกรุ๊ปใดๆ ที่คอมแพคเฉพาะที่ (locally compact abelian topological group) เป็นการแปลงจากกรุ๊ปหนึ่งไปยังกรุ๊ปคู่ของมัน ซึ่งเป็นหัวข้อใน การวิเคราะห์ฮาร์โมนิก (harmonic analysis) ภายใต้การขยายความนี้ทำให้สามารถ สร้างความสัมพันธ์ทั่วไปของ ทฤษฎีการคอนโวลูชัน (en:convolution theorem) ซึ่งเป็นทฤษฎีความสัมพันธ์ระหว่าง การแปลงฟูรีเย และ การคอนโวลูชัน ดู ความเป็นคู่ของพอนเทรียกิน (en:Pontryagin duality) สำหรับพื้นฐานภาคขยายความของการแปลงฟูรีเย

นอกจากนั้นแล้ว ยังมีภาคขยายเพื่อการวิเคราะห์ข้อมูลความถี่ ณ.จุดเวลาใดๆ คือ การแปลง เวลา-ความถี่ (Time-frequency transform) เช่น การแปลงฟูรีเยช่วงเวลาสั้น (short-time Fourier transform) การแปลงเวฟเลท (wavelet transform) การแปลงเชิพเลท (chirplet transform) และ การแปลงฟูรีเยแบบไม่เป็นจำนวนเต็ม (fractional Fourier transform) เป็นการแปลงซึ่งมีจุดมุ่งหมายในการคำนวณ ข้อมูลความถี่ ของสัญญาณ ในรูปฟังก์ชันของเวลา ความสามารถในการคำนวณหาข้อมูลบนทั้งโดเมนเวลา และ ความถี่พร้อมๆ กันนั้นจะถูกจำกัดโดย กฎความไม่แน่นอน (uncertainty principle)

การแปลงในตระกูลการแปลงฟูรีเย

ตารางด้านล่างสรุปการแปลงทั้งหมดที่อยู่ในตระกูลเดียวกับการแปลงฟูรีเย จะสังเกตเห็นว่าความต่อเนื่องหรือความไม่ต่อเนื่องในโดเมนหนึ่ง จะส่งผลให้เกิดความเป็นคาบหรือความไม่เป็นคาบในอีกโดเมนหนึ่ง นอกจากนั้นแล้วการมีค่าเป็นจำนวนจริงในโดเมนหนึ่ง จะส่งผลให้เกิดความสมมาตรในอีกโดเมน

การแปลงเวลาความถี่
การแปลงฟูรีเยต่อเนื่องต่อเนื่อง, ไม่เป็นคาบต่อเนื่อง, ไม่เป็นคาบ
อนุกรมฟูรีเยต่อเนื่อง, เป็นคาบไม่ต่อเนื่อง, ไม่เป็นคาบ
การแปลงฟูรีเยเวลาไม่ต่อเนื่องไม่ต่อเนื่อง, ไม่เป็นคาบต่อเนื่อง, เป็นคาบ
การแปลงฟูรีเยไม่ต่อเนื่องไม่ต่อเนื่อง, เป็นคาบไม่ต่อเนื่อง, เป็นคาบ

ใกล้เคียง

การแปลสิ่งเร้าผิด การแปลการพินิจภายในผิด การแปลงหน่วยอุณหภูมิ การแปรผันทางพันธุกรรม การแปลสิ่งเร้าผิดเชิงบวก การแปลสิ่งเร้าผิดว่าควบคุมได้ การแปลงฟูรีเย การแปลงพื้นที่เพื่อเปลี่ยนชนชั้น การแปรสัณฐานแผ่นธรณีภาค การแปลงโคไซน์ไม่ต่อเนื่อง